Short Communication

THE ECONOMICS OF THE USE OF INORGANIC FERTILISERS AND FARM YARD MANURE IN THE PRODUCTION OF IRISH POTATOES (SOLANUM TUBEROSUM L.)

POWON M.P., AGUYOH J.N., MWAJA V.

Abstract

Arable land in Kenya is decreasing as a result of population pressure, therefore there is need to increase production per unit area. Potato (Solanum tuberosum L.) being a heavy feeder of plant nutrients in the soil requires high supply of external mineral nutrients in the form of inorganic fertilisers or organic manure. Decline in soil fertility and high cost of inorganic fertilisers are limitations to potato yield improvement in Kenya. Potato (Variety 'Asante') was planted for 2 seasons at National Agricultural Research Center – Kitale and one season at Psigirio village (West Pokot District) during 2002 and 2003. The experimental design was Randomized Complete Block (RCB) laid in a Split-plot arrangement with three replications. The potassium levels (0, 83 and 166 K kg ha¹) formed the main plots, while phosphorus (0, 52 and 100 P kg ha¹) and farmyard manure (0, 10 and 20MT FYM ha¹) combinations formed the sub plots. Cost-Benefit-Ratios (CBR) was computed to assess the profitability of treatments. The highest CBR was realized in the application of 100 P kg ha¹ at NARC - Kitale season 1, 50 Kg P ha¹ + 20 t FYM ha¹ at NARC - Kitale season 2 and the application of 83 kg K ha¹ + 50 kg P ha¹ at the Psigirio site. Results indicated that the combined use of inorganic fertiliser and manure is feasible option for soil fertility improvement for potato production. The main objective of the study was to assess the potential for producing high potato yields through use of farmyard manure with reduced quantities of phosphorus and potassium fertilizers.

Key words: potato Solanum tuberosum, farmyard manure, inorganic fertilizers, benefit cost ratio

INTRODUCTION

Potato is an important horticultural crop worldwide used as human food as well as animal feed. In Kenya, potato is ranked as the highest horticultural crop in terms of hectarage accounting for 108 516 ha, yielding 670 303 t (MOA & RD, 2000). The tubers are boiled, steamed, baked, roasted, or fried.

The use of FYM on low value crops, such as maize, is not as economical as when used on high value crops, such as, potatoes. Therefore, there is need to encourage the use of organic manure on high value crops as opposed to the low value ones. However the economics for the use of organic/inorganic fertilizers in potato production is of great importance. Cost benefit ratio (CBR) which can be defined as the total discounted benefit divided by the total discounted cost (Kruse, 2004) is an important parameter since it determines the viability of a project. The project is considered viable if, and only if the CBR is greater than one (Miller, 2001)

The hypothesis tested in this study was: Farmyard manure and inorganic fertilizers use on potato production have no effect on Cost Benefit Ratio (CBR) and the net returns. The objectives of the study was to assess the potential for producing high potato yields through use of farmyard manure with reduced quantities of inorganic fertilizers and determine the highest Cost Benefit Ratio (CBR) and the net returns of using FYM and inorganic fertilizers for potato production.

MATERIALS AND METHODS

The study was carried out in 2002 and 2003 at two sites; Kenya Agricultural Research Institute (KARI) - Kitale and a farmer field school established at Psigirio village in West Pokot District, rift valley province of Kenya. KARI-Kitale lies at a longitude of 35° 7.5° E, latitude of 1° N and 1890 m above the sea level. The area receives an average rainfall of 1182- mm P.a. The soil type is Rhodic Ferrasols which are well-drained, very deep, dark to dark red, very friable to friable clay, with a pH of 6.8. The mean temperature is 18.3°C (Jaetzold and Schmidt, 1983).

Psigirio site lies at a longitude of 35° 15' E and a latitude of 1° 15' N and 2000 M above the sea level. The area receives an average rainfall of 1289-mm P. a. The soil type is Humic Cambisols and Humic Acrisols which are well drained, moderately deep to deep, dark reddish brown to brown, friable to firm, sandy clay loam to clay, with a pH of 6.8 and a mean temperature of 16.3°C (Jaetzold and Schmidt, 1983).

The experimental design was randomized complete block design (RCB) in a split plot arrangement, with three replications. The potassium (K) rates (0 K kg ha⁻¹, 83 K kg ha⁻¹, and 166 K kg ha⁻¹), formed the main plot whereas the phosphorus (P) /FYM combinations formed the sub-plots. Nine treatments of phosphorus and farmyard manure either singly or in combination were used. The P rates were 0, 50, and 100 kg P kg ha⁻¹, while FYM rates included 0, 10 and 20 t ha⁻¹. The

treatments were control, 10 t FYM ha⁻¹, 20 t FYM ha⁻¹, 50 kg P kg ha⁻¹, 50 kg P kg ha⁻¹ + 10 t FYM ha⁻¹, 50 kg $P \text{ kg ha}^{-1} + 20 \text{ t FYM ha}^{-1}, 100 \text{ kg } P \text{ kg ha}^{-1}, 100 \text{ kg } P$ $kg ha^{-1} + 10 t FYM ha^{-1}$, 100 $kg P kg ha^{-1} + 20 t FYM$. Potato variety 'Asante' the most preferred in the two sites (Nandasaba et al., 1999) was used in this trial. The plot size used was 3m x 3m and the potatoes were planted at a spacing of 75cm x 30cm (five rows per plot and eleven plants per row). The inorganic source fertilisers used were triple supper phosphate (TSP), muriate of potash (KCl) and nitrogen (N) applied as calcium ammonium nitrate (CAN) at the rate of 75 kg N ha⁻¹ uniformly to all plots five weeks after emergence, whereas the organic source was farmyard manure (FYM). The manure was spread in the respective plots immediately after ploughing, and then incorporated into the soil. For the inorganic fertiliser, triple supper phosphate (TSP, phosphorus source) and Muriet of potash (MOP, potassium source) were drilled along the furrows at planting but calcium ammonium nitrate (CAN) applied as a top dress five weeks after emergence.

Economic analysis (Cost-Benefit-Ratio) was done to assess the profitability of various fertilizer combinations. The Cost Benefit Ratio (CBR) was calculated using the formula:

CBR = (Gross income-Variable Cost)/Variable cost (Upton 1987). Partial budget was performed in order to ascertain the net income of the treatments.

Assumptions made In the calculations of The Cost Benefit Ratios:

50 kg TSP cost Ksh. 1,250 50-kg MOP cost Ksh. 1,300 1 ton FYM cost Ksh. 1,000 Ploughing cost Ksh. 3,000 ha⁻¹ 1 ton potato seed sells @ Ksh.10, 000 Ridging cost Ksh. 1,250 ha⁻¹ 100-kg potato seed @ Ksh. 2,000 Planting cost Ksh. 5,000 ha⁻¹ Earthing up cost Ksh. 4,000 ha⁻¹

RESULTS AND CONCLUSION

From the Partial budgeting done, The results showed that at KARI- Kitale season 1 trial, the highest CBR was realized at the application of 100 P kg ha⁻¹ (without K and FYM) and the lowest at the application of 83kg K ha⁻¹ + 100 P kg ha⁻¹ +10t FYM ha⁻¹ (Table 1). At the KARI - Kitale season 2, the highest CBR was realized at the application of 166 K kg ha⁻¹ + 100 P kg ha⁻¹ + 10t

FYM ha⁻¹ and the lowest CBR was realized in the control treatment (Table 2). At Psigirio, the highest CBR was realized at the application of 100 P kg ha⁻¹ 10 t FYM ha⁻¹ with no application of K and the lowest in the control treatment (Table 3).

In the second season (KARI - Kitale) and Psigirio, at all levels of K application, treatments without Phosphorus and FYM, showed the lowest CBR. Though less amounts of money was used in cases where no fertilizer is applied, low yields are realized which is translated to lower monetary gain hence low cost benefit ratios are realized. The high costs experienced at higher levels of fertilizer applications are nullified by high income realized. In Tables 1, 2 and 3, treatments with CBRs greater than 2 (underlined) shows that the treatment is worthwhile being undertaken in potato production.

CONCLUSION

The best CBR and the net returns were realized in treatments having 0 kg K ha⁻¹+ 100 P kg ha⁻¹ + 10t FYM ha⁻¹ for the KARI - Kitale season 1, 0 K kg ha⁻¹+ 50 Kg P ha⁻¹ + 20t FYM ha⁻¹ for NARC - Kitale season 2 and finally the application of 83 kg K ha⁻¹ + 50 kg P ha⁻¹+ 0 MT FYM ha⁻¹ or the on farm site.

Recommendation

From the economic analysis done, the combination of small quantities of potassium, FYM and phosphorus is recommended for production high yields of potatoes.

REFERENCES

MARTINEZ AND PELL, P. (2000). Nutrient fluxes from a soil treatment process for pig slurry. British Society of Soil science Journal. Soil use and land management. 16:100–107.

MILLER E. M. (2001): Cut off cost benefit ratio should exceed one, Engineering economist articles.

MOA & R.D (Ministry of Agriculture and Rural Development). (2000). Annual Report.

KRUSE, K. (2004). Calculating Cost Benefit Ratio. An e-Learning Guru newsletter

NANDASABA, J., C.M. LUSWETI, C. NKONGE, E. WANJEKECHE AND D.J. REES. (1999). Participatory evaluation of potato varieties for increased yields and cash generation. KARI/DFID NARP II Project end of conference 23rd-26th March 1999 Nairobi Kenya. Sutterland eds.

UPTON, M. (1987). African farm management. Cambridge University Press. pp. 190

Tab. 1: Economic analysis season 1 KARI – Kitale, 2002

Treatment		Yield (Y) (t/ha)	Price (P) Ksh/t	Gross income (GI) (Ksh.)	Variable cost (VC) (Ksh.)	Net benefit (NB) (Ksh.)	CBR
Main plot	Sub plot			$\mathbf{Y} \times \mathbf{P}$		GI - VC	NB/VC
0 kg K/ha	1	27.26	10 000	272 600	50 000	222 600	4.5

0 kg K/ha	2	32.77	10 000	327 700	60 000	267 700	4.5
0 kg K/ha	3	28.15	10 000	281 500	70 000	211 500	3.0
0 kg K/ha	4	33.30	10 000	333 000	56 250	276 750	4.9
0 kg K/ha	5	32.61	10 000	326 100	66 250	259 850	3.9
0 kg K/ha	6	35.85	10 000	358 500	76 250	282 250	3.7
0 kg K/ha	7	43.33	10 000	433 300	62 500	370 800	5.9
0 kg K/ha	8	34.50	10 000	345 000	72 500	272 500	3.8
0 kg K/ha	9	28.64	10 000	286 400	82 500	203 900	2.5
83 kg K/ha	1	26.87	10 000	268 700	56 500	212 200	3.8
83 kg K/ha	2	30.21	10 000	302 100	66 500	235 600	3.5
83 kg K/ha	3	28.03	10 000	280 300	76 500	203 800	2.7
83 kg K/ha	4	31.44	10 000	314 400	62 750	251 650	4.0
83 kg K/ha	5	25.36	10 000	253 600	72 750	180 850	2.5
83 kg K/ha	6	27.32	10 000	273 200	82 750	190 450	2.3
83 kg K/ha	7	30.71	10 000	307 100	69 000	238 100	3.5
83 kg K/ha	8	26.22	10 000	262 200	79 000	183 200	2.3
83 kg K/ha	9	36.18	10 000	361 800	89 000	272 800	3.1
166 kg K/ha	1	26.34	10 000	263 400	63 000	200 400	3.2
166 kg K/ha	2	32.82	10 000	328 200	73 000	255 200	3.5
166 kg K/ha	3	20.90	10 000	209 000	83 000	126 000	1.5
166 kg K/ha	4	25.48	10 000	254 800	69 250	185 550	2.7
166 kg K/ha	5	28.93	10 000	289 300	79 250	210 050	2.7
166 kg K/ha	6	22.36	10 000	223 600	89 250	134 350	1.5
166 kg K/ha	7	24.14	10 000	241 400	75 500	165 900	2.2
166 kg K/ha	8	24.20	10 000	242 000	85 500	156 500	1.8
166 kg K/ha	9	22.02	10 000	220 200	95 500	124 700	1.3

Tab. 2: Economic analysis season 2, KARI – Kitale, 2003

Treatment		Yield (Y) (t/ha)	Price (P) Ksh/t	Gross income	Variable cost (VC)	Net benefit (NB)	CBR
Main plot	Sub plot			$\frac{\text{(GI) (Ksh.)}}{\text{Y} \times \text{P}}$	(Ksh.)	(Ksh.) GI – VC	NB/VC
0 kg K/ha	1	8.15	10 000	81 500	50 000	31 500	0.6
0 kg K/ha	2	8.83	10 000	88 300	60 000	28 300	0.5
0 kg K/ha	3	10.95	10 000	109 500	70 000	39 500	0.5
	3 4	16.33	10 000	163 300	56 250	107 050	1.9
0 kg K/ha 0 kg K/ha	5	18.16	10 000	181 600	66 250	115 350	1.7
		19.05	10 000	190 500	76 250	113 330	1.7
0 kg K/ha 0 kg K/ha	6 7	17.85	10 000	178 500	62 500	116 000	1.5
0 kg K/ha	8	18.97	10 000	189 700	72 500	117 200	1.9
0 kg K/ha	9	24.16	10 000	241 600	82 500	159 100	1.0
	1	9.60	10 000	96 000	56 500	39 500	0.7
83 kg K/ha	_	12.71					
83 kg K/ha	2 3		10 000	127 100	66 500	60 600	0.9
83 kg K/ha		12.00	10 000	120 000	76 500	43 500	0.6
83 kg K/ha	4	22.60	10 000	226 000	62 750	163 250	2.6
83 kg K/ha	5	12.90	10 000	129 000	72 750	56 250	0.8
83 kg K/ha	6	12.19	10 000	121 900	82 750	39 150	0.5
83 kg K/ha	7	21.15	10 000	211 500	69 000	142 500	2.1
83 kg K/ha	8	23.85	10 000	238 500	79 000	159 500	2.0
83 kg K/ha	9	22.11	10 000	221 100	89 000	132 100	1.5
166 kg K/ha	1	9.36	10 000	93 600	63 000	30 600	0.5
166 kg K/ha	2	20.38	10 000	203 800	73 000	130 800	1.8
166 kg K/ha	3	17.00	10 000	170 000	83 000	87 000	1.0
166 kg K/ha	4	22.13	10 000	221 300	69 250	152 050	2.2
166 kg K/ha	5	24.37	10 000	243 700	79 250	164 450	2.1
166 kg K/ha	6	24.64	10 000	246 400	89 250	157 150	1.8
166 kg K/ha	7	27.99	10 000	279 900	75 500	204 400	2.7
166 kg K/ha	8	31.03	10 000	310 300	85 500	224 800	2.6

Treatment		Yield (Y) (t/ha)	Price (P) Ksh/t	Gross income (GI) (Ksh.)	Variable cost (VC) (Ksh.)	Net benefit (NB) (Ksh.)	CBR
Main plot	Sub plot			$\mathbf{Y} \times \mathbf{P}$		GI - VC	NB/VC
166 kg K/ha	9	29.57	10 000	295 700	95 500	200 200	2.1

Tab. 3: Economic analysis on farm 2003

Treatment		Yield (MT/ha)	Price (P) Ksh/t	Gross income (GI) (Ksh.)	Variable cost (VC) (Ksh.)	Net benefit (NB) (Ksh.)	CBR
Main plot	Sub plot			$Y \times P$		GI – VC	NB/VC
0 kg K/ha	1	11.26	10 000	112 600	50 000	62 600	1.3
0 kg K/ha	2	17.18	10 000	171 800	60 000	111 800	1.9
0 kg K/ha	3	18.52	10 000	185 200	70 000	115 200	1.6
0 kg K/ha	4	15.23	10 000	152 300	56 250	96 050	1.7
0 kg K/ha	5	21.16	10 000	211 600	66 250	145 350	2.2
0 kg K/ha	6	26.55	10 000	265 500	76 250	189 250	2.5
0 kg K/ha	7	22.24	10 000	222 400	62 500	159 900	2.6
0 kg K/ha	8	25.02	10 000	250 200	72 500	177 700	2.5
0 kg K/ha	9	32.71	10 000	327 100	82 500	244 600	3.0
83 kg K/ha	1	5.07	10 000	50 700	56 500	-5 800	-0.1
83 kg K/ha	2	11.48	10 000	114 800	66 500	48 300	0.7
83 kg K/ha	3	15.23	10 000	152 300	76 500	75 800	1.0
83 kg K/ha	4	12.03	10 000	120 300	62 750	57 550	0.9
83 kg K/ha	5	12.50	10 000	125 000	72 750	52 250	0.7
83 kg K/ha	6	19.01	10 000	190 100	82 750	107 350	1.3
83 kg K/ha	7	14.62	10 000	146 200	69 000	77 200	1.1
83 kg K/ha	8	15.93	10 000	159 300	79 000	80 300	1.0
83 kg K/ha	9	27.91	10 000	279 100	89 000	190 100	2.1
166 kg K/ha	1	11.84	10 000	118 400	63 000	55 400	0.9
166 kg K/ha	2	14.93	10 000	149 300	73 000	76 300	1.0
166 kg K/ha	3	17.76	10 000	177 600	83 000	94 600	1.1
166 kg K/ha	4	12.50	10 000	125 000	69 250	55 750	0.8
166 kg K/ha	5	18.10	10 000	181 000	79 250	101 750	1.3
166 kg K/ha	6	20.62	10 000	206 200	89 250	116 950	1.3
166 kg K/ha	7	20.04	10 000	200 400	75 500	124 900	1.7
166 kg K/ha	8	23.08	10 000	230 800	85 500	145 300	1.7
166 kg K/ha	9	20.04	10 000	200 400	95 500	104 900	1.1

^{*} CBR (greater than 2) underlined are the most economical

Tab. 4: Chemical composition of applied farm yard manure

pН	Na me%	K me%	Ca me%	Mg me%	Mn me%	P ppm	N %	C %
8.5	0.5	15.0	52.9	8.3	0.2	171	43	4.3

Received for publication on February 26, 2008 Accepted for publication on June 17, 2009

Corresponding author:

M.P. Powon

Kenya Agricultural Research Institute – Kitale

Box 450 Kitale

Kenya

e-mail: mppowon@yahoo.com

 $^{1 =} Control, \ 2 = 10 \ MT \ FYM/ha, \ 3 = 20 \ MT \ FYM/ha, \ 4 = 50 \ kg \ P/ha, \ 5 = 50 \ kg \ P/ha, \ 6 = 50 \ kg \ P/ha + 20 \ MT \ FYM/ha, \ 7 = 100 \ kg \ P/ha, \ 8 = 100 \ kg \ P/ha + 10 \ MT \ FYM/ha, \ 9 = 100 \ kg \ P/ha + 20 \ MT \ FYM/ha$